Introduction to Design for *(Cost Effective)* Assembly and Manufacturing
Purpose Statement

To provide an overview of Design for Manufacturing and Assembly (DFMA) techniques, which are used to minimize product cost through design and process improvements.
Objectives

Participants will understand:

- Differences and Similarities between Design for Manufacturing and Design for Assembly
- Describe how product design has a primary influence
- Basic criteria for Part Minimization
- Quantitative analysis of a design’s efficiency
- Critique product designs for ease of assembly
- The importance of involving production engineers in DFMA analysis
Design for Assembly

**Definition:** DFA is the method of design of the product for ease of assembly.

‘...Optimization of the part/system assembly’

DFA is a tool used to assist the design teams in the design of products that will transition to productions at a minimum cost, focusing on the number of parts, handling and ease of assembly.
Design for Manufacturing

**Definition:** DFM is the method of design for ease of manufacturing of the collection of parts that will form the product after assembly.

‘Optimization of the manufacturing process…’

DFA is a tool used to select the most cost effective material and process to be used in the production in the early stages of product design.
Differences

Design for Assembly (DFA)
- concerned only with **reducing product assembly cost**
  - minimizes number of assembly operations
  - individual parts tend to be more complex in design

Design for Manufacturing (DFM)
- concerned with **reducing overall part production cost**
  - minimizes complexity of manufacturing operations
  - uses common datum features and primary axes
Similarities

- Both DFM and DFA seek to reduce **material**, **overhead**, and **labor cost**.
- They both shorten the product development cycle time.
- Both DFM and DFA seek to utilize standards to reduce cost.
Terminology

Design for Manufacturing (DFM) and Design for Assembly (DFA) are now commonly referred to as a single methodology, Design for Manufacturing and Assembly (DFMA).
What Internal Organization has the most Influence over Price, Quality, & Cycle Time?

Manufacturing
20 - 30%

Design
70 - 80%
Sequence of Analysis

Concept Design

Design for Assembly

Design for Manufacturing

Detailed Design

Optimize Design for Part Count and Assembly

Optimize Design for Production Readiness
Design for Assembly

DFA is a process that REQUIRES involvement of Assembly Engineers
Design for Assembly Principles

- Minimize part count
- Design parts with self-locating features
- Design parts with self-fastening features
- Minimize reorientation of parts during assembly
- Design parts for retrieval, handling, & insertion
- Emphasize ‘Top-Down’ assemblies
- Standardize parts...minimum use of fasteners.
- Encourage modular design
- Design for a base part to locate other components
- Design for component symmetry for insertion
DFA Process

Step 1  • Product Information: *functional requirements*
        • Functional analysis
        • Identify parts that can be standardized
        • Determine part count efficiencies

Step 2  • Determine your *practical* part count

Step 3  • Identify *quality* (mistake proofing) opportunities

Step 4  • Identify *handling* (grasp & orientation) opportunities

Step 5  • Identify *insertion* (locate & secure) opportunities

Step 6  • Identify opportunities to reduce *secondary operations*

Step 7  • Analyze data for *new design*

**Benchmark when possible**
DFA Analysis Worksheet

<table>
<thead>
<tr>
<th>Part</th>
<th>DFA Complexity</th>
<th>Functional Analysis / Redesign Opportunity</th>
<th>Error Proofing</th>
<th>Handling</th>
<th>Insertion</th>
<th>Secondary Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Cummins Tools**
Product Information:  *functional requirements*

- **Functional analysis**
- Identify parts that can be standardized
- Determine part count efficiencies
Considerations/Assumptions

- The first part is essential (base part)

- Non-essential parts:
  - Fasteners
  - Spacers, washers, O-rings
  - Connectors, leads

- Do not include liquids as parts (e.g., glue, gasket sealant, lube)
Part Identification

- List parts in the order of assembly
- Assign/record part number
So take it apart!
Count Parts & Interfaces

- List number of parts (Np)
- List number of interfaces (Ni)
Dept. 1310 Process Flow Diagram

1. Pleat Paper
2. Precure Heater
3. Cut Paper Pack
4. Bandseal 1st & Last Fold
5. Assemble Paper Element and Centertube w/ Rubberband
6. Form Centertube
Load Paint Line

Paint Filter / Cure Paint

Unload Paint Line

Ink Jet Date Code

Silkscreen

Cure Silkscreen
Tape Carton
Label Carton
Skid Cartons
Tag the Skid
Handling/Shipping
Your Turn

- List parts in the order of assembly.
- Assign part number to keep up with the part.
- List number of parts (Np)
- List number of interfaces (Ni)
Functional Analysis

Current Design

- Does the part move relative to all other parts already assembled?
  - Yes (Y)
  - No (N)

Consider Specification

- Is the movement essential for the product to function?
  - Yes (Y)
  - No (N)

- Must the part be separate to provide the required movement?
  - Yes (Y)
  - No (N)

Other Options

- Is the part of a different material, or isolated from, all other parts already assembled?
  - Yes (Y)
  - No (N)

- Is a different material or isolation essential for the product to function?
  - Yes (Y)
  - No (N)

- Must the part be separate to satisfy the different material or isolation requirement?
  - Yes (Y)
  - No (N)

- Is the part separate to allow for its in-service adjustment or replacement?
  - Yes (Y)
  - No (N)

- Is the adjustment or replacement essential?
  - Yes (Y)
  - No (N)

- Must the part be separate to enable the adjustment or replacement?
  - Yes (Y)
  - No (N)

Essential Part

Non Essential Part
## Determine if Parts Can be Standardized

- **Can the current parts be standardized?:**
  - Within the assembly station
  - Within the full assembly
  - Within the assembly plant
  - Within the corporation
  - Within the industry

- **Should they be?**

- *(Only put a “Y” if both answers are yes…)*

### DFA Analysis Worksheet

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Part Name</th>
<th>DFA Complexity</th>
<th>Functional Redesign</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Base Part - Lower Arm</td>
<td>1 6</td>
<td>Y</td>
</tr>
<tr>
<td>1.2</td>
<td>Lower Arm cover</td>
<td>1 3</td>
<td>N</td>
</tr>
<tr>
<td>1.3</td>
<td>Rivet</td>
<td>2 4</td>
<td>N</td>
</tr>
<tr>
<td>2.1</td>
<td>Upper Arm</td>
<td>1 6</td>
<td>N</td>
</tr>
<tr>
<td>2.2</td>
<td>Upper Arm cover</td>
<td>1 3</td>
<td>Y</td>
</tr>
<tr>
<td>2.3</td>
<td>Rivet</td>
<td>2 4</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>Spring</td>
<td>1 3</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>Pivot</td>
<td>1 3</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totals</th>
<th>10 32 1 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design for Assembly Metrics</td>
<td>17.89 10%</td>
</tr>
<tr>
<td>Targets</td>
<td>0.00 &gt;60%</td>
</tr>
</tbody>
</table>
Theoretical Part Count Efficiency

Theoretical Part Count Efficiency = \frac{\text{Theoretical Min. No. Parts}}{\text{Total Number of Parts}} \times 100

Theoretical Part Count Efficiency = \frac{1}{10} \times 100

Theoretical Part Count Efficiency = 10\%

Rule of Thumb – Part Count Efficiency Goal > 60%
DFA Complexity Factor – Definition

- Cummins Inc. metric for assessing complexity of a product design
- Two Factors
  - $N_p$ – Number of parts
  - $N_i$ – Number of part-to-part interfaces

  - Multiply the two and take the square root of the total
    $$\sqrt{\sum N_p \times \sum N_i}$$

  - This is known as the DFA Complexity Factor
DFA Complexity Factor – Target

Smaller is better (Minimize Np and Ni)

Let Npt = Theoretical Minimum Number of parts
  - from the Functional Analysis
  - Npt = 5

Let Nit = Theoretical minimum number of part to part interfaces
  - Nit = 2(Npt-1)
  - Nit = 2(5-1) = 8

\[
\text{DCF} = \sqrt{\sum Np \times \sum Ni} \\
\text{DCFt} = \sqrt{\sum Npt \times \sum Nit} \\
\text{DCFt} = \sqrt{5 \times 8} = 6.32
\]
Determine Relative Part Cost Levels

- Subjective estimate only
- **Low/Medium/High** relative to other parts in the assembly and/or product line

![DFA Analysis Worksheet](image-url)
Cost Breakdown

- Media paper 21.4%
- Centertube  3.6%
- Endplates (2)  3.0%
- Plastisol    2.6%
- Inner Seal   4.0%
- Spring      0.9%
- Shell       31.4%
- Nutplate    21.0%
- Retainer    4.8%
- Loctite     0.3%
- End Seal    7.0%
Step Two

- Determine Practical Minimum Part Count
Determine Practical Minimum Part Count

- Team assessment of practical changes
- Tradeoffs between part cost and assembly cost
Creativity & Innovation

Theoretical Number of Parts...

'Blue Sky'

Practical & Achievable

Current Design

No. Parts

Theoretical Min. No. Parts

Practical Min. No. Parts

Innovation
Cost of Assembly Vs Cost of Part Manufacture

Saving

Part Count Reduction

Total Saving

Assembly Saving (DFA)

Part Manufacture Saving (DFM)

Optimum
Idea Classification

Implementation

Long Term

Medium Term

Short Term

Risk

Low

Medium

High

Step Two
Don’t constrain yourself to incremental improvement unless you have to!

This style doesn’t tear paper like the claw style and is much cheaper to produce!
Your Turn...

Instructions

- Product Information: *functional requirements*
- Functional analysis
- Identify parts that can be standardized
- Determine part count efficiencies
- Determine your *practical* part count
Fasteners

- A study by Ford Motor Co. revealed that threaded fasteners were the most common cause of warranty repairs.

- This finding is echoed in more recent survey of automotive mechanics, in which 80% reported finding loose or incorrect fasteners in cars they serviced.
Component Elimination

Example: **Rollbar Redesign**

‘..If more than 1/3 of the components in a product are fasteners, the assembly logic should be questioned.’

- 24 Parts
- 8 different parts
- multiple mfg. & assembly processes necessary

- 2 Parts
- 2 Manufacturing processes
- one assembly step
# Fasteners: Cummins Engines

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Number of Components</th>
<th>Number of Fasteners</th>
<th>Percent Fasteners</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Series, 6 Cyl 5.9L</td>
<td>1086</td>
<td>436</td>
<td>40%</td>
</tr>
<tr>
<td>B Series, 4 Cyl 3.9L</td>
<td>718</td>
<td>331</td>
<td>46%</td>
</tr>
<tr>
<td>C Series, 8.3L</td>
<td>1111</td>
<td>486</td>
<td>44%</td>
</tr>
</tbody>
</table>

Data from Munroe & Associates  October 2002
Standard Bolt Sizes

- Minimize extra sizes to both reduce inventory and eliminate confusion during assembly

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>M5 x 0.8</th>
<th>M6 x 1.0</th>
<th>M8 x 1.25</th>
<th>M10 x 1.5</th>
<th>M11 x 1.25</th>
<th>M12 x 1.5</th>
<th>M12 x 1.75</th>
<th>M14 x 1.5</th>
<th>M16 x 2.0</th>
<th>Qty Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>12mm</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14mm</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16mm</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20mm</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25mm</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30mm</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35mm</td>
<td>32</td>
<td>41</td>
<td>12</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39.5mm</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>27</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40mm</td>
<td>22</td>
<td>25</td>
<td>18</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>45mm</td>
<td>9</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50mm</td>
<td>25</td>
<td>18</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55mm</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60mm</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65mm</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70mm</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Candidates for elimination:
Fastener Cost

- Select the most inexpensive fastening method required.
General Design Principles

Self-fastening features
General Design Principles

Symmetry eliminates reorientation

Asymmetric Part  

Symmetry of a part makes assembly easier
General Design Principles

Top-Down Assembly
General Design Principles

Modular Assemblies

1. Imaging
2. Drives
3. Development
4. Transfer/Stripping
5. Cleaning
6. Fusing
7. Charge/Erase
8. Copy Handling
9. Electrical Distribution
10. Photoreceptor
11. Input/Output Devices

Xerox photocopier
Eliminated Parts are NEVER...

- Designed
- Detailed
- Prototyped
- Produced
- Scrapped
- Tested
- Re-engineered
- Purchased
- Progressed

- Received
- Inspected
- Rejected
- Stocked
- Outdated
- Written-off
- Unreliable
- Recycled
- late from the supplier!
Step Three

- Identify **quality** (mistake proofing) opportunities
Mistake Proofing Issues

- Cannot assemble wrong part
- Cannot omit part
- Cannot assemble part wrong way around.

Symmetrical parts

Asymmetrical parts
Mistake Proofing Issues

72 Wiring Harness
Part Numbers
CDC - Rocky Mount, NC
Step Four

- Identify handling (grasp & orientation) opportunities
Quantitative criteria

**Handling Time:** based on assembly process and complexity of parts
- How many hands are required?
- Is any grasping assistance needed?
- What is the effect of part symmetry on assembly?
- Is the part easy to align/position?
Handling Difficulty

- Size
- Thickness
- Weight
- Fragility
- Flexibility
- Slipperiness
- Stickiness
- Necessity for using 1) two hands, 2) optical magnification, or 3) mechanical assistance
Handling Difficulty

size  

slipperiness  

sharpness  

flexibility
Eliminate Tangling/Nesting

Close up springs to avoid tangling.

Design parts so they do not nest or tangle.
- Locking angle
- Increase angle
- Change shape
- Decrease angle

These parts tangle easily.
This part will not tangle.

Not this, this.
Not this, this.
Not this, this.
Not this, this.
Step Five

- Identify insertion (locate & secure) opportunities
Quantitative criteria

- **Insertion time:** based on difficulty required for each component insertion
  - Is the part secured immediately upon insertion?
  - Is it necessary to hold down part to maintain location?
  - What type of fastening process is used? (mechanical, thermal, other?)
  - Is the part easy to align/position?
Insertion Issues

- Provide self-aligning & self locating parts

Part can hang up  Part falls into place  part must be released before it is located, making it difficult to align  redesign
Insertion Issues

- Ensure parts do not need to be held in position

Holding down and alignment required for later operation

Self locating

Secure parts once they are assembled

Chassis

- Assembly should be stable

Spring Retaining recess Projection
Insertion Issues

- Parts are easy to insert.
- Provide adequate access & visibility
Insertion Issues

- Provide adequate access and visibility

- Avoid mating locations which cannot be seen easily
Step Six

- Identify opportunities to reduce secondary operations
Eliminate Secondary Operations

- Re-orientation (assemble in Z axis)
- Screwing, drilling, twisting, riveting, bending, crimping.
Eliminate Secondary Operations

- Welding, soldering, gluing.
- Painting, lubricating, applying liquid or gas.
- Testing, measuring, adjusting.
### Assembly Metrics

<table>
<thead>
<tr>
<th></th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Proofing</td>
<td>[ \text{Sum all Y’s in Error Columns} / \text{Theoretical Min. No. Parts} ]</td>
</tr>
<tr>
<td>Handling Index</td>
<td>[ \text{Sum all Y’s in Handling Columns} / \text{Theoretical Min. No. Parts} ]</td>
</tr>
<tr>
<td>Insertion Index</td>
<td>[ \text{Sum all Y’s in Insertion Columns} / \text{Theoretical Min. No. Parts} ]</td>
</tr>
<tr>
<td>2\textsuperscript{nd} Op. Index</td>
<td>[ \text{Sum all Y’s in 2nd Op. Columns} / \text{Theoretical Min. No. Parts} ]</td>
</tr>
</tbody>
</table>
Analyze All Metrics

First consider:
Reduce part count & type

Then think about:
Error Proofing

Then think about:
Ease of handling
Ease of insertion
Eliminate secondary ops.

Part Count Efficiency & DFA Complexity Factor
Error Index
Handling Index
Insertion Index
2nd Op. Index

Set Target Values for These Measures
Your Turn...

Instructions

Complete the remaining columns & calculate your product’s Assemblability Indices
Step Seven

- Analyze data for new design
DFA Process

Step 1
- Product Information: *functional requirements*
- Functional analysis
- Identify parts that can be standardized
- Determine part count efficiencies

Step 2
- Determine your **practical** part count

Step 3
- Identify **quality** (mistake proofing) opportunities

Step 4
- Identify **handling** (grasp & orientation) opportunities

Step 5
- Identify **insertion** (locate & secure) opportunities

Step 6
- Identify opportunities to reduce **secondary operations**

Step 7
- Analyze data for **new design**

**Benchmark when possible**
DFA Guidelines

In order of importance:

- Reduce part count & types
- Ensure parts cannot be installed incorrectly
- Strive to eliminate adjustments
- Ensure parts self-align & self-locate
- Ensure adequate access & unrestricted vision
- Ensure parts are easily handled from bulk
- Minimize reorientation (assemble in Z axis) & secondary operations during assembly
- Make parts symmetrical or obviously asymmetrical
Understanding Product Costs

Consideration of True Production costs and the Bill of Material Costs,

Typical Costing

<table>
<thead>
<tr>
<th>Pareto by Part Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Castings</td>
<td>1. Fasteners</td>
</tr>
<tr>
<td>2. Forging</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>n. Fasteners</td>
<td>n. Castings</td>
</tr>
</tbody>
</table>

Understanding Product Costs
Selection of Manufacturing Method

Have we selected the Best Technology or Process to fabricate the parts?

Is hard tooling Required...

Have we selected the best Material needed for function and cost?

Have we looked at all the new Technology that is available
Selection of Manufacturing Method

Has the Design Addressed Automation Possibilities?

Is the Product configured with access for and the parts shaped for the implementation of automation?
Understanding Component Features

Part Features that are **Critical To** the Products Functional **Quality**

Every Drawing Call Out is not Critical to Function and Quality
Key DFMA Principles

- Minimize Part Count
- Standardize Parts and Materials
- Create Modular Assemblies
- Design for Efficient Joining
- Minimize Reorientation of parts during Assembly and/or Machining
- Simplify and Reduce the number of Manufacturing Operations
- Specify ‘Acceptable’ surface Finishes for functionality
References

1. Assembly Automation and Product Design
   G. Boothroyd, Marcell Dekker, Inc. 1992
2. Product Design for Manufacture and Assembly
   G. Boothroyd and P. Dewhurst, Boothroyd Dewhurst, Inc. 1989
   Marcell Dekker, Inc. 1994
3. Design and Analysis of Manufacturing Systems
   Prof. Rajan Suri University of Wisconsin 1995
4. Product Design for Assembly: The Methodology Applied
   G. Lewis and H. Connelly
5. Simultaneous Engineering Study of Phase II Injector Assembly line
   Giddings & Lewis 1997
6. Design for Manufacturing Society of Manufacturing Engineers,
   (VIDEO)